Quotients Homophones des Groupes Libres Homophonic Quotients of Free Groups
نویسندگان
چکیده
Ah, la recherche! Du temps perdu. Soit G le quotient du groupe libre a 26 g en era-teurs a; b; c; : : : ; z par les relations A = B, pour tout couple de mots (A; B) pouvant avoir la m^ eme prononciation en anglais. (Un groupe d eeni d'une mani ere analogue a et e consid er e dans Landsburg 1986].) Notre but est de d eterminer la structure du groupe G. Théorème. G est trivial. Démonstration. (Nous nous servirons sans le men-tionner des faits contenus dans Stein 1973].) La relation homophone bye = by implique que e est trivial dans G (en symboles : e = e), apr es quoi les identit es lead = led; maid = made; sow = sew; buy = by; sow = so; lye = lie nous donnent la trivialit e des autres voyelles et demivoyelles a, i, o, u, w et y. La trivialit e des g en erateurs h, k, n, p et b est une cons equence des formules hour = our; knight = night; damn = dam; psalter = salter; plumb = plum; tandis que celle des g en erateurs s, t, l, r et m se d eduit des egalit es bass = base; butt = but; tolled = told; barred = bard; dammed = damned (m ethode des idempotents). Pour les g en erateurs Let G be the quotient of the free group on 26 letters a; b; c; : : : ; z by the relations A = B whenever A and B are words having the same pronunciation in French. (A similarly deened group was considered in Landsburg 1986].) The object of this paper is to determine the structure of G. Theorem. G is trivial. Proof. (We use without special mention facts that can be found in Robert 1973].) The relation soie = soi shows, on canceling soi (reeexive property!), that e is trivial in G (in symbols, e = e). A similar argument applied to the nal letters of soit, sois and aux shows that t, s and x are also trivial. The triviality of r follows from the well-known fact serre = sert Lam 1978], and that of c, l, d, h and n from ce = se; balle = bal; laid = lait; haut = au; parlent = parle; after which the relations allez = aller; sept = cet; champs …
منابع مشابه
Décomposition de Hodge pour l’homologie stable des groupes d’automorphismes des groupes libres
We establish a decomposition of stable homology of automorphism groups of free groups with polynomial contravariant coefficients in term of functor homology. This allows several explicit computations, intersecting results obtained by independant methods by O. Randal-Williams. Classification MSC 2010 : 18A25, 18G15, 20E36, 20J06, 55P42 (18A40, 18E30, 18G40, 55P47). Mots clefs : groupes d’automor...
متن کاملGeometric aspects of rings and representations theories
Lors de la quantification algébrique d'une algèbre de Pois-son, il est intéressant que certains groupes de (co)homologie suivent cette déformation de Poisson en Hochschild. Nous présenterons ce thème relative-ment au groupe des traces en donnant des exemples provenant de variétés quotients par l'action de groupes finis, typiquement pour les singularités de Klein, les actions doublées de groupes...
متن کاملIDEALS WITH (d1, . . . , dm)-LINEAR QUOTIENTS
In this paper, we introduce the class of ideals with $(d_1,ldots,d_m)$-linear quotients generalizing the class of ideals with linear quotients. Under suitable conditions we control the numerical invariants of a minimal free resolution of ideals with $(d_1,ldots,d_m)$-linear quotients. In particular we show that their first module of syzygies is a componentwise linear module.
متن کاملMöbius inversion formula for monoids with zero
The Möbius inversion formula, introduced during the 19th century in number theory, was generalized to a wide class of monoids called locally finite such as the free partially commutative, plactic and hypoplactic monoids for instance. In this contribution are developed and used some topological and algebraic notions for monoids with zero, similar to ordinary objects such as the (total) algebra o...
متن کاملLeft I-quotients of band of right cancellative monoids
Let $Q$ be an inverse semigroup. A subsemigroup $S$ of $Q$ is a left I-order in $Q$ and $Q$ is a semigroup of left I-quotients of $S$ if every element $qin Q$ can be written as $q=a^{-1}b$ for some $a,bin S$. If we insist on $a$ and $b$ being $er$-related in $Q$, then we say that $S$ is straight in $Q$. We characterize semigroups which are left I-quotients of left regular bands of right cancell...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Experimental Mathematics
دوره 2 شماره
صفحات -
تاریخ انتشار 1993